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Results of a numerical-theoretical study of a developed turbulent flow of an incompressible fluid 
in a plane channel with simultaneous injection of mass through one porous wall and suction 
of the same mass through the other are presented. The system of equations of averaged motion 
is closed using a turbulent-stress model. The calculated data of the mean and fluctuational 
characteristics are in reasonable agreement with ezperimental results for two values of the 
Reynolds number of the main flow (Re = 10,400 and 34,000). 

I n t r o d u c t i o n .  Turbulent flows with mass transfer through porous walls have a number of special 
features (mass injection leads to flow turbulization, while mass suction causes flow laminarization) and 
are widely used in practice. The majority of experimental and numerical-theoretical studies are devoted 
to turbulent motion in a round pipe [1]. Considerable success has been achieved in understanding the laws 
of distribution of the mean and fluctuational characteristics of the flow. Calculation results obtained using 
advanced turbulence models are in reasonable agreement with experimental results [1, 2]. In contrast to 
turbulent flow in a round pipe, motion in a plane channel with simultaneous injection through one wall 
and suction through the other is characterized by asymmetry of the boundary actions. Calculations should, 
therefore, be performed from one wall to the other, rather than from the central plane of the channel. A certain 
analog of this kind of channel flow is turbulent motion in a plane channel one wall of which is rough and the 
other smooth [3]. A study showed that asymmetric boundary conditions affect appreciably the turbulent state 
of the flow [3, 4]. The calculation was performed using a Reynolds stress model, and reasonable agreement of 
numerical and experimental data  was obtained [4]. Like the motion in a channel with one rough wall the flow 
in a plane channel with simultaneous injection of mass through one porous wall and its suction through the 
other can become fully turbulent, which is very important for evaluation of current semiempirical theories of 
turbulence. In this aspect, the examined turbulent flow can be used as a test case for description of channel 
flows with mass transfer through porous walls. The present paper is devoted to evaluation of a turbulence 
model by comparing numerical and experimental results. 

1. P h y s i c o m a t h e m a t i c a l  F low Mode l .  We consider a turbulent flow in a plane channel with porous 
walls. The channel width is 2B = 0.45 m and its height is 2H = 0.034 m, as under experimental conditions. 
Let the mass be injected through the lower wall and suction of the same mass occur through the upper wall; 
thus, the flow rate of the main stream does not change. Since the injection and suction velocities are equal and 
constant, the fluid motion is stabilized, and at a certain distance from the beginning of mass transfer the mean 
and fluctuational characteristics do not change in the stream direction. On the average, the flow considered 
is plane and fully turbulent; thus, all the flow parameters depend only on the transverse flow coordinate. The 
Oxx axis is directed along the lower channel wall, and the Ox2 axis is directed along the channel height. In 
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accordance with these assumptions, we can write the following equation of motion in dimensionless variables: 

dU1 dP 1 d2U1 d(ulu21 (1.1) 

Here the reference scale of velocity is the mass-mean velocity U0, and the reference scale of length is half the 
channel height H (Re = UoH/v is the Reynolds number and Vto = v,~/Uo is the mass-transfer velocity). The 
pressure gradient is found from the condition of conservation of mass flow 

2 

f Uldz2 = (1.2) 2. 
0 

System (1.1) and (1.2) is closed using a Reynolds stress model [2, 5], which has the following form for 
the problem considered and low Reynolds numbers: 

d<u,uj> d (1 dIu, jl ) 
Vto dz2 = dz2 Ree dz2 diik + Pij -k ~ii - sij, (1.3) 

where Pii is the generation of Reynolds stress because of the mean shear, ~ii is the correlation of pressure 
fluctuations with the deformation rate, Jqk is the turbulent diffusion flow, and ~ij is the viscous dissipation. 

The relation for ~ij is represented in the form [6] 

2 2 6i,,,6j. 
~ii = "~e~ij + Re y2 (u,nUn), (1.4) 

where e is the dissipation rate of the kinetic energy of turbulence and y is the normM coordinate reckoned 
each time from the wall. 

In accordance with Eq. (1.4), the transport equation of the dissipation rate of the kinetic energy of 
turbulence e is written in Chien's form [6] 

de d [ ( 1  k ( ~ ) )  de]  e e 2 2gee (1.5) 
Vw dx2 = dx2 ~ee + C~, ~ +Cle -~ Pk - C2~fe k Re y2' 

where Pk is the generation of the kinetic energy of turbulence k. The transport equation for the kinetic energy 
of turbulence can easily be derived from (1.3) by convolution with respect to the subscripts i and j: 

dk d (__~ dk J2t ) 2k (1.6) 
V dz2-du - - R e  U 2" 

It is convenient to use this equation in calculations instead of the equation for (u~). 
Two relations were used for approximation of ~ii in (1.3): the first relation, which was proposed in [7], 

is 

the second, more simplified one, which was proposed in [8], is 

e 2 6,./k) O.6(Pq-  2_ ~ + - - 3tSijPkj r (1.8) 

Here 

where ~ij~, is a near-wall correction for t~ij. 
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TABLE 1 

Approximation for ~ j  Approximation for Jiik 

Model version 

A1 
A2 
A3 
B1 
B2 
B3 

relation 

(1.7) (1.s) 

+ 
+ 
+ 

+ 
+ 
+ 

~.ijw = 0 

+ 
+ 

+ 
+ 

relation 

(1.9) (1.10) 

+ 
+ 

+ 
+ 
+ 

+ 

N o t e .  The plus sign means that the relation was used in the model version to 
approximate ~ij or Jiik. 

The diffusion flow Jijk in (1.3) was found from the formula [4] 

_ ( a(ukui) J~jk = - c ,  k (uiu,,) a(u, uk____D + (~,i,~,,) 
cgx, cox, 

A simpler analog of (1.9) was given in [9]: 

gi, k = -0.22 ~ (u~) d(u, uA 
e dz2 

o(~,,,.,A' ~ 
- -  + (uku,,) O z , ,  ]" 

(1.9) 

(1.10) 

In the calculations, use was made of various versions of the model (1.3) that  differ from each other 
by the method of approximation of ~i1 and Jijt (see Table 1). System (1.3)-(1.9) includes the constants and 
near-wall functions C1 = 1.5, C2 = 0.4, 6'3 = 0.45, 6'4 = 0.08, Cs = 0.11, Cle = 1.35, C2e = 1.8, Ca = 0.15, 
ge = exp (-0.hyV, Re), fe = 1 - (1/2) exp [-k2Re/(6e)],  and V, = v,/Uo (v, is the dynamic velocity without 
mass transfer). The near-wall function was found using Cebeci's hypothesis [9] and it is represented by the 
dependence fw = exp ( - 2 y R e  V,/A),  where 

p ,  ~1/2 dP 1 Vw 
A = 26 - ~ exp (11.SVw, - 1) + exp (11.8Vw,) l ; P* = - dx"--1 Re V, 3 ; Vw, = ~**. 

System of equations of motion (1.1) and (1.2) is solved together with the transport equations (u2), (u22), k, 
(ulu2), and e under the boundary conditions 

X 2 - - 0 : U 1  - O , (u  2) - (U 2) ---- (UlU2) --~ k = ~  = O, 

x2 = 2: ua = 0,  ( ~ )  = ( ~ )  = ( u 1 ~ 2 )  = k = ~ = 0. 

A grid with a variable step is used for numerical integration of the system. As a rule, 5 nodes are concentrated 
near the wall (0 ~ x2, ~< 5 and x2, = x2V, Re), the next 12 nodes lie at a distance of 5 ~< x2, ~ 65 from 
the wall, and the most distant region from the wall (65 ~ x2, ~ V, Re) has 30 to 50 nodes, depending on the 
Reynolds number. A numerical solution of the system of ordinary differential equations is obtained by Newton's 
iteration technique. The pressure gradient was determined by the splitting method [10] from the condition of 
mass flow conservation (1.2). The model and the numerical method were checked by comparison of numerical 
data and experimental results obtained in a study [11] of a developed turbulent flow in a plane channel 
without mass transfer through the walls. Calculated test data for the longitudinal velocity component U1 and 

the root-mean-square longitudinal component of velocity fluctuations ~ are in satisfactory agreement 
with experimental data (Fig. 1, where calculated data and experimental data [11] are shown by curves and 
points, respectively). 

2. Discuss ion  of  t h e  Ca l cu l a t ed  Resul t s .  The main regime parameters of the flow are Re and 
V~. The numerical experiment was performed in the range of regime parameters 4- l03 ~ Re ~ 4- 101 
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and 0 ~< Vw ~< 0.01. Detailed numerical data were obtained for Re = 10,400 and 34,000 in accordance with 
experimental conditions [12]. Both in experiments and in calculations, the mass transfer velocity was Vw = 0, 
0.002, 0.004, 0.006, and 0.009 for Re = 10,400 and V~ = 0, 0.001, 0.0018, 0.0025, and 0.0033 for Re = 34,000. 
Available experimental profiles of the longitudinal velocity component U1, the root-mean-square components 
of the longitudinal (~/~12) and transverse ~ ' ~  velocity fluctuations, and the turbulent friction (ulu2) allowed 
one to evaluate the applicability of one or another version of the Reynolds stress model (1.3). 

A comparative analysis of the calculated distributions showed satisfactory agreement with the 
experimental distributions of U1, (~U'~12), and (UlU2) for version A2 (see Table 1), although the calculated 

distributions of ~ are still different from the experimental ones. The near-wall correction '~ijw has only 
a slight effect on the calculated curves. The simplified relation for Jijk from (1.10) increases somewhat the 

values of ~ and ~ in the turbulent core flow in comparison with the experimental data for ~ and 

(~22~. The calculations performed with account for Eq. (1.8) for ~i1 are in poor agreement with experiment. 
Based on a preliminary analysis, we chose version A2 for numerical-theoretical studies. 

Figure 2 shows distributions of the longitudinal velocity component UI for various values of the mass- 
transfer velocity Vw and Re = 10,400 (here and in subsequent figures, calculated and experimental data [12] 
are shown by curves and points, respectively). It is seen that, for Vw = 0, the U1 profile is symmetric about 
the central plane of the channel, with a maximum velocity value (U1 max = 1.16). The calculated distribution 
of U1 in the laminar sublayer, transitional region, and turbulent core flow yields an adequate description 
of the turbulent flow in the plane channel. Mass transfer is responsible for deformation of the U1 profile. 
The distribution of Ul becomes asymmetric about the central plane, levels out near the wall where injection 
occurs, and, conversely, fills out near the wall where suction occurs. The maximum of the velocity U1 is shifted 
from the symmetry plane toward the upper boundary and is located where the turbulent friction (ulu2) is 
compensated by the shear stress of the channel walls and the transverse convection of momentum. The larger 
the value of Vw, the more noticeable the deformation of the UI profile. For the largest value of the mass- 
transfer velocity (Vw = 0.009) reached in the experiment, the maximum of U1 is in the immediate vicinity of 
the wall where mass suction occurs. 

This circumstance can be explained only by the fact that the turbulent friction (UlU2) near this wall 
decreases strongly as a result of suction of the boundary layer (Fig. 3, where profiles of (ulu2) are constructed 
for regime parameters corresponding to the U1 distribution). It is easily seen that the larger the value of V~, 
the larger the increase in (ulu2) on the side of injection. Being symmetric about the channel centerline, the 
initially linear distribution of (ulu21 for V~ = 0 becomes asymmetric with increasing Vw. A strong increase 
in (ulu2) is observed at the surface where the mass is injected. 

The largest value of (ulu2), which, as a rule, is equal to the shear stress on the wall with Vw = O. 
begins to move into the stream. As .Vw increases, a larger part of the channel cross section is affected by the 
transverse convection of momentum, and the shear stress of the wall affects only the surface where the mass is 
sucked out. The zero value of (ulu2) is shifted from the central plane of the channel, and its location x20 does 
not coincide with the coordinate X2m of the maximum value of the longitudinal velocity component Ulm. The 
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coordinate z2m lies closer to the channel wall. The calculated data show that the values of U1, as a whole, 
correlate with the (uz u2) distribution and are in reasonable agreement with experimental results for all values 
of the mass-transfer velocity Vw. 

Results for U1 and (uzu2) calculated for Re = 34,000 are plotted in Figs. 4 and 5. Qualitatively, the 
profiles of U1 and (uzu2) possess the aforementioned features. However, there are some quantitative differences: 
(1) the turbulent core flow occupies a large part of the channel cross section; (2) because of the smaller value 
of V~,, the deformation of the profiles of U1 and (ulu2) is less noticeable than for Re = 10,400; (3) the 
experimental data are in reasonable agreement with the calculated data (curves of U1 and (UlU2)). 

Figure 6 shows profiles of the root-mean-square components of the longitudinal ~ (a) and transverse 

(~22) (b) fluctuations for Re = 10,400. A significant increase in the turbulence characteristics at the velocity 
wall where mass injection occurs and their decrease at the surface where suction of the boundary layer occurs 
are observed. An increase in ~/(Ul 2) and ~/(u22) near the lower boundary is observed, despite the fact that the 
gradient of the longitudinal velocity component U1 decreases, and, thus, the turbulence generation owing to 

weaker. Here, the larger the value of Vw, the stronger the increase in ~ - ~  and the motion becomes mean 

�9 - - - ~ "  The maximum values of . - ~  and ~ are increased and are shifted into the depth of the turbulent 
core flow, and the minimum values leave the central plane of the channel toward the upper boundary. The 
values of ~ and ~ are decreased near the surface with mass suction, although the gradients of the 
longitudinal velocity component U1 are significant in this region, and the turbulence generated by the averaged 
motion should be noticeable. The calculated data prove the fact that mass injection increases the values of 
the turbulence characteristics, and suction of the boundary layer decreases them. The results calculated for 
(~12) are in reasonable with the experimental data for all values of the mass-transfer velocity Vw. agreement 

whereas the calculated values of'~/(u 2 ) ~  are significantly different from the experimental ones, although the 

qualitative behavior of (~-~22) is similar to the distribution of ~ versus V~. 
Beginning from Re = 34,000, an increase in Vw does not lead to significant reconstruction of the 
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profiles ~ and ( V / ~  (Fig. 7). The deformation of the profiles and their characteristic values (the maxima 

of V/(u~) and ~/(u~) and the shift of the coordinate of the minima) are appreciably lower than for Re 10,400. 
This can be explained not only by the smaller values of Vw but also by the growth of the flow turbulence at 
Re = 34,000. The calculated and experimental data for ~(tt~l are in reasonable agreement. 

On the basis of the numerical-theoretical research, we can conclude that: 
(1) supplemented by the equation of the dissipation rate of the kinetic energy of turbulence, the 

Reynolds stress model in version A2 can be used to describe a fully developed turbulent flow in a plane 
channel ~ith simultaneous injection of mass through one porous wall and suction of the same mass through 
the other; 

(2) the calculated data for the mean and fluctuational motion are in satisfactory agreement with the 
experimental data; 

(3) fully developed flow in a plane channel with mass transfer through porous walls is a classical 
example where turbulization and laminarization effects occur simultaneously, and it can become a test case 
for evaluation of the capabilities of present-day turbulence models. 
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